
Transitioning from “Density per CPU” to
“Pixel per Dollar”

Marc Baillavoine, September 24th, 2019

How Many Channels on my Dual-Xeon Gold 6140?

“How many OTT channels can you have in a Dual-xeon Gold 6140” is a
question I have heard hundreds of times in the past. Why: the density (i.e.
the total number of video streams that a given hardware can process in
“real time”) has always been considered as a key factor for determining the
overall price of a video delivery solution. Hence, many companies have
been investing a lot of money in making their video delivery chain (and
especially the video transcoder) more “efficient” (efficient means “reducing
the number of CPU cycles but keeping the quality as is”) to lower the TCO
of their solution. Open source softwares (such as libx264) also have a long
history of optimizing their code to run faster on any kind of platform. x264
is now even being used as a benchmark tool for measuring the CPU speed.

New software paradigms, born with the cloud, shed a new light on this
story. CPU has now become a resource that can be provisioned anywhere,
at any time, … at any price, and modern software architectures can leverage
that diversity to dramatically lower the sacrosanct “price per channel”.
Moreover, a “channel” (the one you choose with your remote) may not be

1

the optimal object to make this comparison with the diversity of flavours
OTT brings in the game.

Let’s see how modern softwares can leverage new development and
architecture paradigms to dramatically improve the video delivery TCO and
transition from a “channel per cpu” to a “pixel per dollar” logic.

 Video Delivery 101

Rate Distortion Optimizations

Video transcoding is complex stuff. Video standards, since the early days
of H.261 (predecessor of H.262, also known as MPEG2), define the way the
decoder shall behave when receiving a bitstream. But it never describes the
way the “encoding” should be done, for one reason: there are billions of
billions of possibilities for encoding a video sequence, and the vendor
implementing the encoder is solely responsible for making these choices.
Without diving too deep into the details:

● each picture is split into ‘units’ (“macroblocks” in H.264/AVC, “Coding
Tree Unit” in H.265/HEVC) that are typically 16x16 pixels

● then for each unit (there are 8160 units in a 1080p image), the encoder
has to decide:

1. the type of this unit (I, P, B),
2. the size of the prediction block,
3. the size of the transform,
4. the motion vectors for each of the prediction blocks,
5. the quantizer to use,
6. etc.

2

Every combination will give a different quality and a different rate. The
complexity of a video encoder is in choosing the mode that will lower the
number of bits used to encode one “unit”, while maximising the video
quality: that is what we call the “Rate-Distortion Optimization”.

In an ideal world, the encoder would try all the possible combinations and
choose the best compromise. But it would literally take years to process 1
hour of content, even on the latest CPU or GPU generation. Hence, an
encoder has to make “early exit” decisions to dramatically lower the
number of possible combinations. This is usually done through a wise mix
of thresholds that will prune some large portions of the decision tree.
These thresholds are compared to metrics computed on the input content,
resulting in a highly non-linear processing time. It sounds obvious, but
that’s the reason why it takes significantly less time to encode a SMPTE
colorbar than any real-life content, as depicted by the above histogram.

3

CPU Cycle Wasting

Let us say you are moving from SF to LA, and let us imagine:

● that you rent exactly one moving truck for each room of your house,
● that you have to guess the size of the truck.

What will happen ? You will probably take a lot of margin so that all the
pieces of furniture of one room fill within one truck. You will end up with a
lot of free space in most of the trucks. Even worst, you may be short of
storage for one of your rooms, but you will have to leave the extra furniture
because you cannot use the truck of another room for moving it.

Sounds stupid, right? This is exactly what happens today with legacy
software running in the cloud! The several tasks of encoding a channel (the
room) are tied to a hardware (the truck). Even though all the vendors claim
to be pure software house, that software is physically tied to hardware. In
other words, one channel will be processed on only one hardware.

4

This legacy architecture, combined with the heterogeneity of encoding
times (as seen above) leads encoder vendors to take significant margins
on the hardware, as they need to be able to sustain “real-time” encoding for
the worst case (even though the worst case only occurs 1 time in 1000). If
you inspect a live transcoding farm today, is is very likely that ~70% of its
CPU is idle because of this margin. In a nutshell, vendors have been
optimizing their code for decades to use less and less CPU cycles (using
the latest SIMD instructions on the processor), but 70% of these cycles end
up wasted because of the non-linearity of video transcoding processing
time.

A modern video delivery architecture needs to truly segregate those stacks.
By doing so, the cloud can be considered as a very large CPU where tasks
(process) can be scheduled, regardless of the underlying hardware. This
has many excellent properties, the most immediate one being a significant
CPU cycles saving. Keep in mind that 70% of the CPU cycles are wasted
today because of the margins that are taken because of that software
adherence to one server. If you can dynamically distribute the workload
amongst all the CPUs (i.e. any process can run on any server), you will save
a lot of CPU cycles.

The Cloud is the CPU

CPU Abstraction

Hardware virtualisation is one of the key characteristics of the cloud.
Virtualisation, in that sense, means “abstraction”: although some cloud
providers give reasonable information on the underlying hardware, it is
almost impossible to precisely and repeatedly know the type of CPU that
you will be assigned when reserving a Virtual Machine. Moreover, you are
likely to get a portion of a CPU that will be logically split over several users,
and you may not get the same CPU tomorrow morning or if you spin up a
VM in a different region. Trying to map “channels per CPU” is meaningless
because you don’t have a clue what the CPU model is. For the same price,
in the same region and at the same time, you may even get pretty different

5

results. On top of that, cloud providers have varying definitions of a “vCPU”:
while Google offers a unified definition of a vCPU, AWS has a definition of a
vCPU that explicitly depends on the machine type (c5, t4, …) you request.

As an example, GCP can offer “Sandy Bridge” (released in 2011), “Haswell”
(2013), “Broadwell” (2014) or “Skylake” (2015) SKUs. As you can guess,
such a disparity will lead to significant performance difference, even though
Google did its best on the virtualization layer to balance the allocated CPU
frequency so that those different SKUs appear similar in performance. The
table below reports average encoding time for 10 seconds segments.
Differences of up to 10% can be seen in performance for the exact same
price (surprisingly, the oldest CPU generation give the best results!)

What is true for one single cloud provider becomes obvious when you mix
cloud providers. For instance, AWS has c5 machines which are based on
the latest Xeon Platinum CPUs. One vCPU of such instances will transcode
much faster than any of the above machines (while, of of course, being
more expensive).

Auto Adaptive, Self Scalable Software
6

 If you want to run software that will behave the same, regardless of the
allocated CPU type, you need to have an architecture that will adapt and
scale to accommodate this heterogeneity. If you do not do that, you will end
up with a software that will be specifically designed for a hardware type,
thus losing one of the main benefits of the cloud: segregation between the
software and the hardware stacks.

7

As said earlier, legacy software process one channel on one given server:
they cannot migrate their processing from server to server. Cloud-Native
software, as opposed to that, have the ability to “load balance” their
processing amongst several “processing units” running on different
hardware. Enabling such a capability on a video processing saves a lot of
CPU cycles. Similarly to the famous “Bitrate StatMux” (where you can
dynamically adjust the bitrate for each channel within a satellite,
fixed-bandwidth transponder), Quortex has the ability to perform “CPU
Statmux” so as to adjust, in real time, the number of allocated CPU cycles
per stream. This is done at the cloud level and is not limited to the channels
running on a single hardware. Deep Learning is a key tool to predict the
CPU cycles that will be used by the transcoder. This is a great answer to the
non-linear encoding time issue, and, according to our tests, can save up to
30% of the CPU cycles.

CPU Abstraction

According to Google, “Preemptible VMs are highly affordable, short-lived
compute instances suitable for batch jobs and fault-tolerant workloads.
Preemptible VMs offer the same machine types and options as regular
compute instances and last for up to 24 hours”. AWS has the same concept
with “Spot” instances, while Azure has this in Beta program (“Low priority
VMs”).

To go back to our moving truck story, let us imagine that the renter has an
offer for trucks that would cost 20% of the normal price, but those trucks
can stop anywhere between SF and LA. The renter ensures that another

8

truck will immediately pop-up to take over. You will of course say “no”
because you do not want to take out the furniture from one truck to put it in
the replacement truck. But what if this is automatic ? What if the
replacement truck can take over while the first truck is still moving ? Then
you will of course consider that option seriously.

Modern software can run on preemptible VMs because they were designed
to be fault-tolerant. This is a killer feature, as the price of the infrastructure
suddenly drops by 80%.

How many channels per $2 500 monthly?

CPU Abstraction

We have seen that truly cloud-native software can leverage new software
development paradigms:

● By using an architecture that breaks the adherence between the
processing and the underlying hardware,

● By statmuxing the CPU demanding tasks (the more channels, the
more efficient),

● By using preemptible VMs.

It is easy to understand that giving a “Channel density by CPU” is absolutely
irrelevant with that approach. At Quortex, the software we have developed
makes use of these properties and we have transitioned to a “Pixel rate per
dollar” approach. It is of course still worth spending time on optimizing the
core of a software, but the cloud-native nature of our solution dramatically
reduces the infrastructure price. An example is shown below for an
infrastructure TCO for 20 channels encoded following the HLS Authoring
Specifications, showing up to 80% of cost savings on the infrastructure.

9

10

