
Why is Kubernetes a great fit for OTT
Marc Baillavoine, September 24th, 2019

Since its creation in 2014, Kubernetes has been widely adopted by
many forward-thinking companies for several reasons: its open, rapid
and safe development, and its ability to schedule, automate and
manage distributed applications on dynamic container infrastructure.
This new development paradigm (initiated by Google) is driving an
inexorable transformation of how modern applications are built,
delivered and deployed in the enterprise.

The video delivery ecosystem has many specificities that have slowed
down Kubernetes adoption, but the number of features and the level of
maturity of the latest versions pave the way for a new era in deploying
and operating streaming services

Reason 1: HTTP rocks!

OTT is all about HTTP. It’s even part of the name of the (by far) most
widely used OTT format: HTTP Live S treaming (HLS). When you
receive an OTT video stream, the player makes a succession of HTTP
requests to download chunks of video that are decoded and

1



assembled in your device, producing a continuous stream. HTTP has
some very nice built-in properties:

● Being based on TCP, it comes with built-in error correction in
case of bad network connection,

● Because HTTP easily crosses firewall and routers, allowing
HTTP streaming on any network is straightforward,

● Being client-initiated (pull model), it allows advanced
client-side behaviors so as to re-emit a request or to select
another rendition ladder.

Although any type of network traffic can be used in Kubernetes, it
comes with several built-in objects for handling HTTP traffic;
communicating between the several microservices of a Kubernetes
cluster is easily achieved in HTTP, and lots of HTTP development
frameworks are a perfect fit with a dockerized approach.

2



Reason 2: Focus on “what”, not on “how”

One of the keys of a successful OTT deployment is that the delivery
infrastructure must be continuously changed to accommodate for the
variations in terms of audience and network conditions. This is a
radical change compared to traditional delivery schemes that do not
depend on these conditions. And this requires new ways of defining
your application and your infrastructure.

One of the most undervalued properties of Kubernetes is that it allows
a declarative deployment of your application. A declarative description
allows to focus on the final shape it must embrace, without focusing
on how this is achieved under the hood, whereas an imperative
approach describes all the steps to build that shape.

If this is a little bit obscure, let’s take a first example. “Draw me a
sheep” is declarative. No matter how the sheep is drawn, that’s not
your problem. The imperative form of “draw me a sheep” would be to
give step by step drawing directions to end up with a sheep.

Still unclear ? Let’s take a broadcast example. Legacy systems usually
adhere to imperative principles: you take a serie of actions to apply
configuration delta to an existing system state, leading to a new
system state. If something goes wrong in the middle of an operation,
it is completely up to you to list the required imperative steps to go
back to a normal situation. It is also pretty difficult to take a snapshot
of the system configuration at one given time. This usually leads to “if
it works, don’t touch it” situations that greatly impedes changes and
innovation.

3



Now, think of the benefits of a declarative approach for redundancy.
No matter what happened on the physical layer (hardware failure, for
instance), Kubernetes will continuously make sure that the current
state matches the desired state by re-scheduling jobs (that are called
“pods”) or instantiating new nodes (with the help of the cloud
provider) in the background. If your application is correctly built, you
will not even notice that something went wrong.

Reason 3: Born to scale

We all know that scaling is a key for successful OTT deployments.
Obviously, it doesn’t take the same amount of resources for streaming
the first round of the Rapid City Pinball tournament than for streaming
the Superbowl final. You also need to scale the compute resources
accordingly if you want to use start of the art encoding techniques
such as audience aware encoding.

4

https://www.quortex.io/post/audience-aware-encoding


Guess what? Kubernetes was born from an internal Google project
(called Borg) in the goal of being able to massively scale an
application through HTTP load balancing and replication of
processing jobs. Kubernetes was literally born to solve the exact
problem that everyone faces with sudden peaks of audience for live
streaming.

Reason 4: Share the same development principles

It’s striking to notice how OTT and Kubernetes development phases
are intimately interleaved. They were roughly born in the same years
and they evolved together over the past two decades.

One of the reasons of the massive HLS adoption has been its
fast-paced evolution. Unlike traditional DVB standards (that evolved
marginally over the years because they are built to last for decades
and offer a very high level of interoperability), HLS has gone through
23 differents drafts between 2009 and 2017 before it was finally
published as a RFC. If you want to always offer a cutting edge
streaming service, it’s obvious that you have to use continuous
operation schemes. Kubernetes is a great tool for embracing such

5



methods (with concepts of rolling update, for instance) and is widely
used by DevOps teams all around the world to provide such schemes.

The future is now

The video industry suffered from many defective cloud/docker
implementations, where a software that was never designed for the
cloud was brutally ported into a VM or into a docker, ending up with no
benefits and more constraints for the customer.

The Quortex solution was built with and for Kubernetes. It was never
designed to run outside a dockerized/kubernetes infrastructure. It
heavily uses HTTP internally, comes with native scaling and offers a
declarative deployment and configuration schemes. Kubernetes has
been widely adopted in many different industries and is a rock-solid
platform, supported by a very large community. Live streaming and
Kubernetes have evolved alongside, it’s now time to use them together
to build the future of OTT!

6


